Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo.
نویسندگان
چکیده
Incorporation of cross-linked quaternary ammonium polyethylenimine (QPEI) nanoparticles in dental resin composite has a long-lasting and wide antimicrobial effect with no measured impact on biocompatibility in vitro. We hypothesized that QPEI nanoparticles incorporated into a resin composite have a potent antibacterial effect in vivo and that this stress condition triggers a suicide module in the bacterial biofilm. Ten volunteers wore a removable acrylic appliance, in which two control resin composite specimens and two resin composite specimens incorporating 1% wt/wt QPEI nanoparticles were inserted to allow the buildup of intraoral biofilms. After 4 h, the specimens were removed and tested for bacterial vitality and biofilm thickness, using confocal laser scanning microscopy. The vitality rate in specimens incorporating QPEI was reduced by > 50% (p < 0.00001), whereas biofilm thickness was increased (p < 0.05). The ability of the biofilm supernatant to restore bacterial death was tested in vitro. The in vitro tests showed a 70% decrease in viable bacteria (p < 0.05). Biofilm morphological differences were also observed in the scanning electron microscope micrographs of the resin composite versus the resin composite incorporating QPEI. These results strongly suggest that QPEI nanoparticles incorporated at a low concentration in resin composite exert a significant in vivo antibiofilm activity and exhibit a potent broad spectrum antibacterial activity against salivary bacteria.
منابع مشابه
Assessment of the anti-bacterial efficacy of the silver incorporated resin composites
Background and Objectives: Increased bacterial (streptococcal) biofilm aggregation on the surface of resin composite restorations in comparison with amalgam and glass ionomer restorations makes the composite restorations susceptible to secondary caries next to the restorations. In this study, the anti-Streptococcus mutans properties of resin composites containing silver nanoparticles were inve...
متن کاملSurface-modified nanoparticles as anti-biofilm filler for dental polymers
The objective of the study was to synthesis silica nanoparticles modified with (i) a tertiary amine bearing two t-cinnamaldehyde substituents or (ii) dimethyl-octyl ammonium, alongside the well-studied quaternary ammonium polyethyleneimine nanoparticles. These were to be evaluated for their chemical and mechanical properties, as well for antibacterial and antibiofilm activity. Samples were inco...
متن کاملThe antibacterial activity of an epoxy resin-based dental sealer containing bioactive glass, hydroxyapatite, and fluorohydroxyapatite nanoparticles against Enterococcus Faecalis and Streptococcus mitis
Objective(s): The present study aimed to investigate the antibacterial properties of a conventional epoxy-based dental sealer modified with synthesized bioactive glass (BG), hydroxyapatite (HA), and fluorine-substituted hydroxyapatite (FHA) nano-fillers. Materials and Methods: The synthesized nano-fillers were incorporated into the conventional epoxy-based dental seaer at the concentratio...
متن کاملEvaluation of Candida albicans adhesion and biofilm formation on a denture base acrylic resin containing silver nanoparticles.
AIM This study firstly evaluated the activity of a silver nanoparticle (AgNPs) solution against Candida albicans and then the effect of incorporation of AgNPs into a denture base acrylic resin on the material's hydrophobicity, C. albicans adhesion and biofilm formation. METHODS AND RESULTS The AgNPs solution was synthesized by chemical reduction and characterized. Minimum inhibitory (MIC) and...
متن کاملNanofiltration Membranes Synthesized from Polyethyleneimine for Removal of MgSO4 from Aqueous Solution (RESEARCH NOTE)
A novel work was performed for fabrication and modification of composite nanofiltration (NF) membrane by polymerization reaction between polyethyleneimine (PEI) and triphthaloyldechloride (TPC). the main purpose of this work was water treatment. polysulfone was applied as a main polymer of substrate. The result of reaction between PEI and TPC would be formation of polyamide layer on the membran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 51 شماره
صفحات -
تاریخ انتشار 2010